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Note 

Calculation of the Coulomb Coefficients and the Madelung Constant 
in a Face-Centered Cubic Crystal with Additional Charges 

Located along the (100) Direction 

1. INTRODUCTION 

It is well known that lattice sums are not absolutely convergent. The problem of 
summing this type of series arose from early calculations in lattice dynamics and 
was first solved by Ewald [l]. Since this pioneering work, many other papers on 
the same subject have appeared. They suggest alternative solutions using more 
sophisticated approaches such as the quite recent papers by Glasser [2]. 

In the present note we illustrate a practical method for calculating these sums in 
a fairly complicated crystal structure. This consists of a face-centered cubic crystal 
(NaCI type) with additional charges located the (100) directions. These charges, to 
be called overlap charges, arise from the exchange and overlap effects in the case of 
partially covalent bond, such as in silver halides [3]. 

The lattice sums considered here are of three types: (1) positive-ion-overlap- 
charges interactions; (2) negative-ion-overlap-charges interactions; and (3) 
overlap-charges-overlap-charges interactions. The ion-ion interactions are not 
included because the corresponding coefficients are well known [4]. 

Since these coefficients depend on the location of the overlap charges, we have 
indicated by G the distance of an overlap charge from the closest positive ion 
divided by the interionic distance r,, , G ranges from 0.1 to 0.5. 

Since each ion is surrounded by six overlap charges which do not occupy 
equivalent positions in the primitive cell, there are in principle 6 interactions of 
the group (1) or (2) and 36 of the group (3). The coefficients calculated below 
include all these interactions and the final results given in Fig. 1 were divided by 
the number of interactions which contribute to the coefficient under consideration. 
The same procedure was also adopted for the calculation of the Madelung constant 
coefficients. 

2. THEORETICAL BACKGROUND 

The method of Ewald was used in order to obtain quickly convergent lattice 
sums. This method is also known as the theta function transformation [4, 51 and 
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allows us to covert sums over the lattice points 1 into sums over the reciprocal 
lattice h. Since this method is well known we only recall results for the Coulomb 
coefficients and the Madelung constant. 
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FIG. 1. Plot of the coefficients S&J&‘) in units l/u. for k along [l, 0, 01. Since G is measured 
from the closest positive ion, for S&) the abscissa corresponds to the actual distance (in units 
of rO), whereas for S.&,) the distance from the closest negative ion is (1 - G) and for S,(,,) 
the shortest distance between two overlap charges is 426. 

(a) Coulomb Coeficients 

We are interested in a sum over the lattice points rz : 

By means of Ewald’s method this sum can be written [4] as 

Xx,(k, W = $ ; 1 & + kz)@, + ‘?J) e-(h+k)*/4 cos ,Q . rKk,) 

01 + kj2 I 

+ 2 C 1 [(47r2 + ;) J+ - + S,,] 7N2e--naza 

+ [3z5# - s,,] q/ cos?r(k * l), 

(2) 
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where ZI, is the volume of the primitive cell and k labels one of the two sublattices. 
The distances from the origin are written in the form I = (I I 1) r, and the 09 Y, z 
reciprocal lattice sites as h = (h, , h, , /zJ2ro and $I(&) is the complementary error 
function. 

(b) Madelung Constant 

For the present lattice we define the Madelung constant as follows: 

(3) 

where ek , e,? indicate the types of charges (measured in units of e) and r is the 
distance of the charge being considered from the origin (at a lattice site). Using the 
procedure previously described, (3) becomes 

= i T ek g ek$Rkkt - 2&28kk’). 

In the present case very few terms constribute to the sums over I, but about 30 
terms give an appreciable constribution to those over h. Different procedures were 
used in calculating these two types of sums. In fact since only one or two indices of 
the set (II:, 1,) I,) are different from zero a simplified calculation technique is 
sufficient for these sums but not for the sums over h because in this case all indices 
(hz , h, , h,) may be different from zero. 

3. CALCULATION OF THE SUMS OVER 1 

The set of lattice sites which give a relevant contribution to these sums is given in 
Table I. 

We have adopted the procedure of constructing matrices of the order 3 x N 
where N can be 3,6,12 depending on the number of charges which is either 6 or 12 
or 24. In these matrices each row corresponds to one of the allowed permutations 
(for example for the matrix bl this could be 1, 0, 1 - G) and the number of rows 
is one half of the total number of permutations. This is a consequence of the fact 
that sets 2 and --I give the same contribution. 
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TABLE I 

Terms in 1 Contributing to (2) and (4). For the Definition of G See Text. The Matrices of Type a, 
b, c Are, Respectively, of the Order 3 x 3, 3 x 12, and 3 x 6. 

Interactions 

Positive-ion-overlap-charge 
Positive-ion-overlap-charge 
Positive-ion-overlap-charge 
Negative-ion-overlap-charge 
Negative-ion-overlap-charge 
Negative-ion-overlap-charge 
Overlap-charge-overlap-charge 
Overlap-charge-overlap-charge 
Overlap-charge-overlap-charge 
Overlap-charge-overlap-charge 
Overlap-charge-overlap-charge 

Typical Number of Type of 
Distances term charges matrix 

G GO0 6 Ul 
[2(1 - G) + G2]lje l-G10 24 bl 

2-G 2-GO0 6 a2 
1-G l-GO0 6 a3 

[l + G*]1/2 GlO 24 b2 
l+G l+GOO 6 a4 
$CZG GGO 12 Cl 

1/2(1 - G) 1-G 0 1-G 12 c2 
2-G 2-GO0 6 a5 

2 - 2G 2-2GO0 6 a6 
[4G(G - 1) + 2]‘12 1 - 2G 1 0 24 b3 

By means of these matrices the calculation of the terms I, , I, in (2) boils down to 
the multiplication of two elements in the same row of the appropriate matrix, and 
this can be carried out cyclically, whereas the S,, are similarly evaluated from the 
multiplication of the elements of a diagonal matrix. 

The contribution of the term (0, 0, 0) is, as is well known [4] is $z-5/2822, and has to 
be added to the terms in the sum (2), whereas in (4) it has been included. 

TABLE II 

Set of Coefficients of Type h, Related Number of Permutations and Values of L and M Used to 
Calculate Them. 

k h, h, permutations LM 

000 1 1 1 
h10 0 6 3 2 
h, 4 0 12 3 4 
h, hz 0 24 6 4 
h, hl h 8 1 8 
hl h, h, 24 3 8 
h h, h, 48 6 8 
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4. CALCULATION OF THE SUMS OVER h 

For the calculation of these quantities we have adopted the procedure of carrying 
out the permutations of the three indiced h, , h, , h, including the negative values. 
In Table II we give the types of sets that appear in these sums, the number of 
permutations and the quantities L and M required to carry out the permutations. 
These were carried out using a computer program (described in the appendix) 
which includes two loops. In the inner one (that over L) the computer permuted the 
indices or exchanged them. Tn the outer one (over M) all indices or part of them 
were changed in sign according to the value of M in order to obtain a complete set 
of permutations, including the negative values. 

5. RESULTS AND CONCLUSIONS 

In Fig. 1 we plot the Coulomb coefficients (2) for the three types of interactions 
discussed in Section 1, for k along [l 0 01. The coefficient plotted is S,, , in fact the 
remaining coefficients satisfy the following relations: 

2s,, = 2&, = -s,, ) s,, = s,, = s,, = 0. 

6 

7- 

6- 

RI.01 

5- 

4- 

3- 

2- 

l- 

O- 

RI-01 

I- 

.5 

FIG. 2. Plot of the coefficients R(+& R(-,), and R(,,) vs G as in Fig. 1. 
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The dependence of the results on G when k assumes values close to n/a is to be 
expected. In fact for short wavelengths the trigonometric factors which appear in 
the lattice sums (2) vary rapidly with G. The behavior for k -+ 0 is also expected. In 
fact for small values of k, the coefficients (2) depend only on its direction. Con- 
sequently when the overlap charges are displaced (which equivals to changing k’) 
the results are not affected. 

In Fig. 2 we plot the coefficients R,, of the Madelung constant (4). There are five 
such coefficients: (a) ion-ion (of the same type); (b) ion-ion (of different types); 
(c) positive-ion-overlap charges; (d) negative-ion-overlap charges; and (e) overlap- 
charges-overlap-charges. The terms (a) and (b) are independent of G, whereas the 
others depend on G and in the figure are indicated with R(+o) R(--) and R(o 0) 
These coefficients increase as the inverse power of the distance when this tends to 
zero. This behavior which is essentially that of the Coulomb potential arises from 
the predominant contribution of the sums over 1. 

APPENDIX 

In this Appendix we give a schematic procedure for the calculation of the sums 
over h. Each set of indices h, , h, , h, , must have the order given in Table II. For 
instance the set 4, 0, 2 must be presented as 4, 2, 0, or 2, 4, 0. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
INTEGER HX, HY, HZ 
READ HX, HY, HZ, L, M 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
NX=HX, NY=HY, NZ=HZ 
DOlOMl = l,M 
DO3Ll = l,L 
IF (4-Ll) 2, 1, 2 

1 HX=HY,HY=HX 
2HX=HY,HY=HZ,HZ=HX 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C COMPUTES THE SUMS USING HX, HY, HZ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . . . 
3 CONTINUE 

A=Ml 
IF (4-Ml) 5, 4, 6 

4 NZ= -NZ 
5 A = Ml-4 
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6 A = A/2. 0 
IA = A * 100. 01 
IF(IA-100) 7, 8, 6 

7 NX = -NX, NY = -NY, NZ = -NZ 
GOT09 

8 NY = -NY; NZ = -NZ 
gHX=NX,HY=NY,HZ=NZ 

10 CONTINUE 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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